Properties of spinal lamina III GABAergic neurons in naïve and in neuropathic mice.
نویسندگان
چکیده
BACKGROUND Nerve injury leads to Aβ-fibre-mediated mechanical allodynia that is in part due to an impaired GABAergic inhibition in the spinal cord dorsal horn. The properties and function of GABAergic neurons in spinal cord lamina III, an area where low-threshold mechanosensitive Aβ-fibres terminate are, however, largely unknown. METHODS We used transgenic mice, which express enhanced green fluorescent protein (EGFP) under control of the promoter GAD67. The morphology and neurochemical characteristics of GABAergic, EGFP-expressing neurons were characterized. We assessed active and passive membrane properties of spinal lamina III GABAergic neurons in naïve animals and animals with a chronic constriction injury (CCI) of the sciatic nerve. RESULTS EGFP-expressing neurons in lamina III were predominantly islet cells (47%), whereas non-EGFP-expressing neurons were largely inverted stalked cells (40%). EGFP-expressing neurons accounted for about 25% of GABAergic neurons in lamina III. Forty-four percent co-expressed glycine, 10% neuronal nitric oxide synthase and 3% co-expressed parvalbumin. We found costaining with protein kinase CβII in 42% of EGFP-expressing neurons but no expression of protein kinase Cγ. Membrane properties and excitability of EGFP-and non-EGFP-expressing neurons from naïve and neuropathic animals were indistinguishable. The most frequent firing pattern was tonic firing (naïve: 35%, neuropathic: 37%) followed by gap firing (naïve: 33%, neuropathic: 25%). Delayed, initial burst and single-spike firing patterns made up the remainder in both groups. CONCLUSION A change in membrane excitability or discharge pattern of this group of lamina III GABAergic neurons is unlikely the cause for mechanical allodynia in animals with CCI.
منابع مشابه
Physiological properties of spinal lamina II GABAergic neurons in mice following peripheral nerve injury.
Aberrant GABAergic inhibition in spinal dorsal horn may underlie some forms of neuropathic pain. Potential, but yet unexplored, mechanisms include reduced excitability, abnormal discharge patterns or altered synaptic input of spinal GABAergic neurons. To test these hypotheses, we quantitatively compared active and passive membrane properties, firing patterns in response to depolarizing current ...
متن کاملImpaired Excitatory Drive to Spinal Gabaergic Neurons of Neuropathic Mice
Adequate pain sensitivity requires a delicate balance between excitation and inhibition in the dorsal horn of the spinal cord. This balance is severely impaired in neuropathy leading to enhanced pain sensations (hyperalgesia). The underlying mechanisms remain elusive. Here we explored the hypothesis that the excitatory drive to spinal GABAergic neurons might be impaired in neuropathic animals. ...
متن کاملDirect excitation of spinal GABAergic interneurons by noradrenaline.
Endogenous pain control is, in part, mediated by descending inhibition of spinal nociception via spinal release of noradrenaline. Antinociception by activation of descending noradrenergic fibres has partially been attributed to the direct inhibition of nociceptive spinal neurons. Here, we tested the alternative hypothesis: the direct excitation of inhibitory spinal interneurons by noradrenaline...
متن کاملBlocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury.
We show that transsynaptic apoptosis is induced in the superficial dorsal horn (laminas I-III) of the spinal cord by three distinct partial peripheral nerve lesions: spared nerve injury, chronic constriction, and spinal nerve ligation. Ongoing activity in primary afferents of the injured nerve and glutamatergic transmission cause a caspase-dependent degeneration of dorsal horn neurons that is s...
متن کاملBirthdate study of GABAergic neurons in the lumbar spinal cord of the glutamic acid decarboxylase 67-green fluorescent protein knock-in mouse
Despite the abundance of studies on γ-aminobutyric acid (GABA) ergic neuron distribution in the mouse developing spinal cord, no investigation has been devoted so far to their birthdates. In order to determine the spinal neurogenesis of a specific phenotype, the GABAergic neurons in the spinal cord, we injected bromodeoxyuridine (BrdU) at different developmental stages of the glutamic acid deca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of pain
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2013